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Estimating probability densities from short samples:
A parametric maximum likelihood approach

T. Dudok de Wit* and E. Floriani†

Centre de Physique The´orique, Luminy Case 907, 13288 Marseille Cedex 9, France
~Received 16 January 1998!

A parametric method similar to autoregressive spectral estimators is proposed to determine the probability
density function~PDF! of a random set. The method proceeds by maximizing the likelihood of the PDF,
yielding estimates that perform equally well in the tails as in the bulk of the distribution. It is therefore well
suited for the analysis of short sets drawn from smooth PDF’s and stands out by the simplicity of its compu-
tational scheme. Its advantages and limitations are discussed.@S1063-651X~98!06410-1#

PACS number~s!: 02.70.Hm, 02.50.Ng
t
ite

th

iv

is
ra

r
n
rn

gh
t

ic
c
n

ce.
rop-
ap-
ries
l
the
e-

rnel
rly
ch

nst a
on-
r of

nu-
sti-
ega-

ex-
one
be
the

re-
de

ric
the
at-
em
ive

is
of

ic
I. INTRODUCTION

There are many applications in which it is necessary
estimate the probability density function PDF from a fin
sample ofn observations$x1 , x2 , . . . , xn% whose true
PDF is f (x). Here we consider the generic case in which
identically distributed~but not necessarily independent! ran-
dom variables have a compact supportxkP@a,b#.

The usual starting point for a PDF estimation is the na
estimate

f̂ d~x!5
1

n (
i 51

n

d~x2xi !, ~1!

whered( ) stands for the Dirac delta function. Although th
definition has a number of advantages, it is useless for p
tical purposes since a smooth functional is needed.

Our problem consists in finding an estimatef̂ (x) whose
integral over an interval of given length converges towa
that of the true PDF asn→`. Many solutions have bee
developed for that purpose: foremost among these are ke
techniques in which the estimatef̂ d(x) is smoothed locally
using a kernel functionK(x) @1–3#,

f̂ ~x!5E
a

b 1

w
KS x2y

w D f̂ d~y!dy, ~2!

whose width is controlled by the parameterw. The well-
known histogram is a variant of this technique. Althou
kernel approaches are by far the most popular ones,
choice of a suitable width remains a basic problem for wh
visual guidance is often needed. More generally, one fa
the problem of choosing a good partition. Some solutio
include Bayesian approaches@4#, polynomial fits @5#, and
methods based on wavelet filtering@6#.

An alternative approach, considered by many authors@7–
11#, is a projection of the PDF on orthogonal functions
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f̂ ~x!5(
k

akgk~x!, ~3!

where the partition problem is now treated in dual spa
This parametric approach has a number of interesting p
erties: a finite expansion often suffices to obtain a good
proximation of the PDF and the convergence of the se
versus the sample sizen is generally faster than for kerne
estimates. A strong point is its global character, since
PDF is fitted globally, yielding estimates that are better b
haved in regions where the lack of statistics causes ke
estimates to perform poorly. Such a property is particula
relevant for the analysis of turbulent wave fields, in whi
the tails of the distribution are of great interest~e.g.,@12#!.

These advantages, however, should be weighed agai
number of downsides. Orthogonal series do not provide c
sistent estimates of the PDF since for increasing numbe
terms they converge towardf̂ d(x) instead of the true density
f (x) @13#. Furthermore, most series can only handle conti
ous or piecewise continuous densities. Finally, the PDF e
mates obtained that way are not guaranteed to be nonn
tive ~see, for example, the problems encountered in@14#!.

The first problem is not a major obstacle, since most
perimental distributions are smooth anyway. The second
is more problematic. In this paper we show how it can
partly overcome by using a Fourier series expansion of
PDF and seeking a maximization of the likelihood

L̂5E
a

b

ln f̂ ~x!dx. ~4!

The problem of choosing an appropriate partition then
duces to that of fitting the PDF with a positive definite Pa´
approximant@15#.

Our motivation for presenting this particular paramet
approach stems from its robustness, its simplicity, and
originality of the computational scheme it leads to. The l
ter, as will be shown later, is closely related to the probl
of estimating power spectral densities with autoregress
~AR! or maximum entropy methods@16–18#. To the best of
our knowledge, the only earlier reference to similar work
that by Carmichael@19#; here we emphasize the relevance
5115 © 1998 The American Physical Society
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5116 PRE 58T. DUDOK de WIT AND E. FLORIANI
the method for estimating PDF’s and propose a criterion
choosing the optimum number of basis functions.

II. THE MAXIMUM LIKELIHOOD APPROACH

The method we now describe basically involves a proj
tion of the PDF on a Fourier series. The corresponde
between the continuous PDFf (x) and its discrete characte
istic functionfk is established by@20#

fk5E
2p

1p

f ~x!ejkxdx, ~5!

f ~x!52p (
k52`

1`

fke
2 jkx, ~6!

where fk5f2k* PC is Hermitian @21#. Note that we have
applied a linear transformation to convert the support fr
@a,b# to @2p,p#.

For a finite sample, an unbiased estimate of the charac
istic function is obtained by inserting Eq.~1! into Eq. ~5!,
giving

f̂k5
1

n (
i 51

n

ejkxi. ~7!

The main problem now consists in recovering the PDF fr
Eq. ~6! while avoiding the infinite summation. By working i
dual space we have substituted the partition choice prob
by that of selecting the number of relevant terms in the F
rier series expansion.

The simplest choice would be to truncate the series
given ‘‘wave number’’p and discard the other ones

f̂ ~x!52p (
k52p

1p

f̂ke
2 jkx. ~8!

Such a truncation is equivalent to keeping the lowest w
numbers and thus filtering out small details of the PDF.
cidentally, this solution is equivalent to a kernel filterin
with K(x)5sin(px)/px as kernel. This kernel is usuall
avoided because it suffers from many drawbacks such as
generation of spurious oscillations.

An interesting improvement was suggested by Burg in
context of spectral density estimation~see, for example
@16,17#!. The heuristic idea is to keep some of the low wa
number terms while the remaining ones, instead of being
to zero, are left as free parameters:

f̂ ~x!52p (
k52`

1`

âke
2 jxk with âk5f̂k , uku<p.

~9!

The parametersâk , for uku.p, are then fixed self-
consistently according to some criterion.

We make use of this freedom to constrain the solution
a particular class of estimates. Without any prior informat
at hand, a reasonable choice is to select the estimate
contains the least possible information or is the most like
r

-
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It is therefore natural to seek a maximization of an entro
quantity such as the sample entropy

Ĥ52E
2p

1p

f̂ ~x!ln f̂ ~x!dx, ~10!

or the sample likelihood

L̂5E
2p

1p

ln f̂ ~x!dx. ~11!

We area priori inclined to choose the entropy because o
objective is the estimation of the PDF and not that of t
characteristic function. However, numerical investigatio
done in the context of spectral density estimation rather l
support to the likelihood criterion@22#. A different and stron-
ger motivation for preferring a maximization of the likel
hood comes from the simplicity of the computational sche
it gives rise to.

This maximization means that the tail of the characteris
function is chosen subject to the constraint

]L̂

]âk

50, uku.p. ~12!

From Eqs.~9! and ~11! the likelihood can be rewritten as

L̂5E
2p

1p

lnS 2p (
k52`

1`

âke
2 jxkD dx. ~13!

As shown in the Appendix, the likelihood is maximize
when the PDF can be expressed by the functional

f̂ p~x!5
1

(
k52p

p

cke
2 jkx

, ~14!

which is a particular case of a Pade´ approximant with poles
only and no zeros@15#. Requiring that f̂ p(x) is real and
bounded, it can be rewritten as

f̂ p~x!5
«0

2p

1

u11a1e2 jx1•••1ape2 jpxu2
. ~15!

The values of the coefficients$a1 , . . . ,ap% and of the nor-
malization constant«0 are set by the condition that the Fou
rier transform off̂ p(x) must match the sample characteris
function f̂k for uku<p.

This solution has a number of remarkable properti
some of which are deferred to the Appendix. Forem
among these are its positive definite character and the sim
relationship which links the polynomial coefficien
$a1 , . . . ,ap% to the characteristic function on which the
perform a regression. Indeed, we have

f̂k1a1f̂k211a2f̂k221•••1apf̂k2p50, 1<k<p.
~16!

This can be cast in a set of Yule-Walker equations wh
unique solution contains the polynomial coefficients
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F f̂0 f̂21 ••• f̂2p11

f̂1 f̂0 ••• f̂2p12

A A A

f̂p21 f̂p22 ••• f̂0

GF a1

a2

A

ap

G52F f̂1

f̂2

A

f̂p

G . ~17!

Advantage can be taken here of the Toeplitz structure of
matrix. The proper normalization@*2p

1p f̂ (x)dx51# of the
PDF is ensured by the value of«0 , which is given by a
variant of Eq.~16!,

f̂01a1f̂211a2f̂221•••1apf̂2p5«0 . ~18!

Equations ~15! and ~17! illustrate the simplicity of the
method.

III. SOME PROPERTIES

A clear advantage of the method over conventional se
expansions is the automatic positive definite character of
PDF. Another asset is the close resemblance with autoreg
sive or maximum entropy methods that are nowadays wid
used in the estimation of spectral densities. Both meth
have in common the estimation of a positive function
means of a Pade´ approximant whose coefficients directly i
sue from a regression@Eq. ~16!#. This analogy allows us to
exploit here some results previously obtained in the fram
work of spectral analysis.

One of these concerns the statistical properties of
maximum likelihood estimate. These properties are ba
known because the nonlinearity of the problem impedes
analytical treatment. The analogy with spectral densit
however, reveals that the estimates are asymptotically
mally distributed with a standard deviation@23,24#

s f̂} f̂ . ~19!

This scaling should be compared against that of conventio
kernel estimates, for which

s f̂}A f̂ . ~20!

The key point is that kernel estimates are relatively less
liable in low density regions than in the bulk of the distrib
tion, whereas the relative uncertainty of maximum likeliho
estimates is essentially constant. The latter property is o
ously preferable when the tails of the distribution must
investigated, e.g., in the study of rare events.

Some comments are now in order. By choosing a Fou
series expansion, we have implicitly assumed that the P
was 2p periodic, which is not necessarily the case. Th
special care is needed to enforce periodicity, since otherw
wraparound may result@25#. The solution to this problem
depends on how easily the PDF can be extended per
cally. In most applications, the tails of the distribution pr
gressively decrease to zero, so periodicity may be enfor
simply by artificially padding the tails with a small interva
in which the density vanishes. We do this by rescaling
support from@a,b# to an interval which is slightly smalle
e
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than 2p, say @23,3# @26#. Once the Pade´ approximant is
known, the@23,3# interval is scaled back to@a,b#.

If there is no natural periodic extension to the PDF@for
example, iff (a) strongly differs fromf (b)# then the choice
of Fourier basis functions in Eq.~3! becomes questionabl
and, not surprisingly, the quality of the fit degrades. Even
this case, however, the results can still be improved by us
ad hocsolutions@27#.

We mentioned before that the maximum likelihoo
method stands out by its computational simplicity. Indeed
minimization of the entropy would lead to the solution

ln f̂ p~x!} (
k52p

p

cke
2 jkx, ~21!

whose numerical implementation requires an iterative m
mization and is therefore considerably more demanding.

Finally, the computational cost is found to be compara
to or even better~for large sets! than for conventional histo-
gram estimates. Most of the computation time goes into
calculation of the characteristic function, for which the num
ber of operations scales as the sample sizen.

IV. CHOOSING THE ORDER OF THE MODEL

The larger the orderp of the model is, the finer the detail
in the PDF estimate are. Finite sample effects, however,
increase withp. It is therefore of prime importance to find
compromise. Conventional criteria for selecting the b
compromise between model complexity and quality of t
fit, such as the final prediction error and the minimum d
scription length@16–18#, are not applicable here becau
they require the series of characteristic functions$fk% to be
normally distributed, which they are not.

Guided by the way these empirical criteria have been c
sen, we have defined a new one, which is based on the
lowing observation: asp increases starting from 0, the PDF
f̂ p(x) progressively converge toward a stationary shape; a
some optimal order, however, ripples appear and the sh
start diverging again. It is therefore reasonable to comp
the PDF’s pairwise and determine how close they are
natural measure of closeness between two positive distr
tions f̂ p(x) and f̂ p11(x) is the Kullback-Leibler entropy or
information gain@28,29#

Î ~ f̂ p11 , f̂ p!5E
2p

1p

f̂ p11~x!ln
f̂ p11~x!

f̂ p~x!
dx, ~22!

which quantifies the amount of information gained by chan
ing the probability density describing our sample fromf̂ p to
f̂ p11 . In other words, ifHp ~or Hp11) is the hypothesis tha
x was selected from the population whose probability den
is f̂ p ( f̂ p11), thenÎ ( f̂ p11 , f̂ p) is given as the mean informa
tion for discriminating betweenHp11 and Hp per observa-
tion from f̂ p11 @28#.

Notice that the information gain is not a distance betwe
distributions; it nevertheless has the property of being n
negative and to vanish if and only iff̂ p[ f̂ p11 . We now
proceed as follows: starting fromp50 the order is incre-
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mented until the information gain reaches a clear minimu
this corresponds, as it has been checked numerically, to
convergence toward a stationary shape; the correspon
order is then taken as the requested compromise. Cle
there is some arbitrariness in the definition of such a m
mum since visual inspection and common sense are nee
In most cases, however, the solution is evident and
search can be automated. Optimal orders usually range
tween 2 and 10; larger values may be needed to model
continuous or complex shaped densities.

V. SOME EXAMPLES

Three examples are now given in order to illustrate
limits and the advantages of the method.

A. General properties

First, we consider a normal distribution with exponent
tails as often encountered in turbulent wave fields. We sim
lated a random sample withn52000 elements and the ma
results appear in Fig. 1.

The information gain@Fig. 1~b!# decreases as expecte
until it reaches a well-defined minimum atp57, which
therefore sets the optimal order of our model. Since the
PDF is known, we can test this result against a comm
measure of the quality of the fit, which is the mean integra
squared error~MISE!, d,

d~p!5E
a

b

@ f ~x!2 f̂ p~x!#2dx. ~23!

The MISE, which is displayed in Fig. 1~b!, also reaches a
minimum atp57 and thus supports the choice of the info
mation gain as a reliable indicator for the best model. Te
carried out on other types of distributions confirm this go
agreement.

Now that the optimum PDF has been found, its charac
istic function can be computed and compared with the m
sured one, see Fig. 1~a!. As expected, the two characterist
functions coincide for thep lowest wave numbers@Eq. ~16!#;
they diverge at higher wave numbers, for which the mo
tries to extrapolate the characteristic function se
consistently. The fast falloff of the maximum likelihood e
timate explains the relatively smooth shape of the resul
PDF.

Finally, the quality of the PDF can be visualized in Fi
1~d!, which compares the measured PDF with the true o
and an estimate based on a histogram with 101 bins.
excellent agreement is obtained, both in the bulk of the d
tribution and in the tails, where the exponential falloff
correctly reproduced. This example illustrates the ability
the method to get reliable estimates in regions where s
dard histogram approaches have a lower performance.

B. Interpreting the characteristic function

The shape of the characteristic function in Fig. 1~a! is
reminiscent of spectral densities consisting of a low wa
number ~band-limited! component embedded in broadba
;
he
ng
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ed.
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noise. A straightforward calculation of the expectation
ufku indeed reveals the presence of a bias which is due to
finite sample size

E@ uf̂ku#5ufku1
g

An
, ~24!

whereg depends on the degree of independence between
samples in$x%. This bias is illustrated in Fig. 2 for indepen
dent variables drawn from a normal distribution, showi
how the wave number resolution gradually degrades as
sample size decreases. Incidentally, a knowledge of the
level could be used to obtain confidence intervals for
PDF estimate. This would be interesting insofar as no
sumptions have to be made on possible correlations in
data set. We found this approach, however, to be too in
curate on average to be useful.

FIG. 1. Example of a normal distribution with exponential tai
The sample size isn52000. From top to bottom are shown:~a! the

magnitudeuf̂ku of the characteristic function~thick line! and the fit
resulting from a seventh order model;~b! the information gain
~thick line! and the MISE, both showing a minimum aroundp57

which is marked by a circle;~c! the likelihoodL̂ associated with the
different PDF’s estimated forp51 –20; and finally~d! the maxi-
mum likelihood estimate of the PDF~thick line!, an estimate based
on a histogram with 101 equispaced bins~dots! and the true PDF
~thin line!.
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The presence of a bias also gives an indication of
smallest scales~in terms of amplitude ofx) one can reliably
distinguish in the PDF. For a set of 2000 samples dra
from a normal distribution, for example, components w
wave numbers in excess ofk53 are hidden by noise an
hence the smallest meaningful scales in the PDF are of
order of dx50.33. These results could possibly be furth
improved by Wiener filtering.

C. Influence of the sample size

To investigate the effect of the sample lengthn, we now
consider a bimodal distribution consisting of two normal d
tributions with different means and standard deviations. S
distributions are known to be difficult to handle with kern
estimators.

Samples with, respectively,n5200, n52000, and n
520 000 elements were generated; their characteristic fu
tions and the resulting PDF’s are displayed in Fig. 3. Clea
finite sample effects cannot be avoided for small samples
the method nevertheless succeeds relatively well in captu
the true PDF and in particular the small peak associated
the narrow distribution. An analysis of the MISE shows th
it is systematically lower for maximum likelihood estimat
than for standard histogram estimates, supporting the form

D. A counterexample

The previous examples gave relatively good results
cause the true distributions were rather smooth. Althou
such smooth distributions are generic in most application
may be instructive to look at a counterexample, in which
method fails.

Consider the distribution which corresponds to a
through an annulus

f ~x!5H 1

2
, 1<uxu<2

0 elsewhere.

~25!

A sample was generated withn52000 elements and the re
sulting information gains are shown in Fig. 4. There is
ambiguity in the choice of the model order and indeed
convergence of the PDF estimates toward the true PD
neither uniform nor in the mean. Increasing the order i
proves the fit of the discontinuity a little but also increas
the oscillatory behavior known as the Gibbs phenomen

FIG. 2. The expectationE@ uf̂ku# computed for sets of variou
sizes taken from the same normal distribution. The noise-indu
bias level goes down as the size increases, progressively reve
finer details of the PDF.
e
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This problem is related to the fact that the PDF is disco
tinuous and hence the characteristic function is not ab
lutely summable.

Similar problems are routinely encountered in the des
of digital filters, where steep responses cannot be appr
mated with infinite impulse response filters that have a li
ited number of poles@20#. The bad performance of the max
mum likelihood approach in this case also comes from
inability to handle densities that vanish over finite interva
A minimization of the entropy would be more appropria
here.

VI. CONCLUSION

We have presented a parametric procedure for estima
univariate densities using a positive definite functional. T
method proceeds by maximizing the likelihood of the PD
subject to the constraint that the characteristic functions
the sample and estimated PDF’s coincide for a given num
of terms. Such a global approach to the estimation of PD
is in contrast to the better known local methods~such as
nonparametric kernel methods! whose performance is poore
in regions where there is a lack of statistics, such as the
of the distribution. This difference makes the maximum lik
lihood method relevant for the analysis of short records~with
typically hundreds or thousands of samples!. Other advan-
tages include a simple computational procedure that can
tuned with a single parameter. An entropy-based criter

d
ing

FIG. 3. The PDF’s as calculated for sets of various sizes ta
from the same binormal distribution. The thick line designates
maximum likelihood estimate, the thin line the true PDF, and
dots a histogram estimate obtained from 61 equispaced bins.
optimum orders are, respectively, from top to bottomp55, p56,
andp511.
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5120 PRE 58T. DUDOK de WIT AND E. FLORIANI
has been developed for selecting the latter.
The method works best with densities that are at le

once continuously differentiable and that can be exten
periodically. Indeed, the shortcomings of the method are
sentially the same as for autoregressive spectral estim
which give rise to the Gibbs phenomenon if the density
discontinuous.

The method can be extended to multivariate densities,
the computational procedures are not yet within the realm
practical usage. Its numerous analogies with the desig
digital filters suggest that it is still open to improvements
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APPENDIX

We detail here the main stages that lead to the PDF e
mate described in Sec. II because extensive proofs are ra

FIG. 4. Results obtained for an annular distribution; the sam
size isn52000. In~a! the information gain has no clear minimum
and hence there is no well-defined order for the model. In~b! the
estimated PDF’s forp51 andp52 fail to fit the true PDF~thick
line!. Increasing the order~c! improves the fit but also enhances th
Gibbs phenomenon. Dots correspond to a histogram estimate
equispaced bins.
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difficult to find in the literature.
The maximum likelihood condition@Eq. ~12!# can be ex-

pressed as

E
2p

1p e2 jkx

(
l 52`

`

â le
2 j lx

dx5E
2p

1p e2 jkx

f̂ ~x!
dx50, ~A1!

for uku.p @30#. This simply means that the Fourier expa
sion of @ f̂ (x)#21 should not contain terms of orderuku.p
and hence the solution must be

f̂ p~x!5
1

(
k52p

p

cke
2 jkx

. ~A2!

The PDF we are looking for must of course be real, and
the coefficients should be Hermitianck5c2k* . We also want
the PDF to be bounded, which implies that

(
k52p

p

cke
2 jkxÞ0, ;xP@2p,p#. ~A3!

Let us now define, forz complex

C~z!5 (
k52p

p

c2kz
k, ~A4!

and

P~z!5zpC~z!. ~A5!

P(z) is a polynomial of degree 2p. It can be easily verified
that @31#

P~z!5z2pF PS 1

z*
D G*

~A6!

as a consequence of the Hermiticity of the coefficientsck . In
particular, this tells us that ifz1 is a root ofP(z), then 1/z1*
~the complex conjugate of its mirror image with respect
the unit circle! is also a root ofP(z). From Eq.~A3! we
know that none of these roots are located on the unit cir

Let us now rearrange the roots ofP(z), denoting by
$z1 , . . . ,zp% the p roots lying outside the unit disk and b
$1/z1* , . . . ,1/zp* % the p other ones that are located inside t
unit circle. We can then write

P~z!5c2p~z2z1!•••~z2zp!S z2
1

z1*
D •••S z2

1

zp*
D ,

~A7!

with

c2pz1•••zp5cpz1* •••zp* . ~A8!

From thisC(z) can be written as

le

ith
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C~z!56B~z!FBS 1

z*
D G*

, ~A9!

where

B~z!5U cp

z1•••zp
U1/2

~z2z1!•••~z2zp!. ~A10!

By construction, all the roots ofB(z) are located outside th
unit disk.

Finally, we get forf̂ p(x)

f̂ p~x!5
1

C~z5ejx!
56

1

uB~ejx!u2
. ~A11!

All the solutions of the maximum likelihood principle, if rea
and bounded, are thus of constant sign and have the stru
given by Eq.~A11!. Excluding negative definite solutions w
obtain

f̂ p~x!5
«0

2p

1

u11a1e2 jx1•••1ape2 jpxu2
, ~A12!

where

«05
2p

ub0u2
, ai5

bi*

b0*
, i 51, . . . ,p, ~A13!

where $b1 , . . . ,bp% are the coefficients of the polynomia
B(z) andA(z)511a1z1•••1apzp has all its roots outside
the unit disk. The normalization constant«0 is set by the
condition

E
2p

1p

f̂ p~x!dx51. ~A14!

The coefficients$a1 , . . . ,ap% are now identified on the basi
that the characteristic function of the PDF estimatef̂ p(x)
should match the firstp terms of the sample characterist
function exactly, namely,

âk5f̂k5E
2p

1p

f̂ p~x!ejkxdx, 1<k<p. ~A15!

To this purpose, let us compute the quantity(k50
p akâ l 2k .

Recalling thatA(z) is analytic in the unit circle and makin
use of Cauchy’s residue theorem, we obtain

(
k50

p

akf̂ l 2k50, 1< l<p, ~A16!

(
k50

p

akf̂2k5«0 . ~A17!

Equation~A16! fixes the values of$a1 , . . . ,ap% and gives
the Yule-Walker equations@Eq. ~17!#. The solution is unique
provided that
ure

detF f̂0 ••• f̂2p11

A A

f̂p21 ••• f̂0

GÞ0. ~A18!

The latter condition is verified except when a repetitive p
tern occurs in the characteristic function. If this happens th
the orderp should simply be chosen to be less than t
periodicity of this pattern.

Besides its positivity, the solution we obtain has a num
of useful properties. First, note that all the terms of its ch
acteristic function can be computed recursively by

F âk11

âk

A

âk2p12

G5F 2a1 2a2 ••• 2ap

1 0 ••• 0

0 1 ••• 0

A A A

0 0 ••• 0

G F âk

âk21

A

âk2p11

G ,

~A19!

in which the starting condition is set by thep first values of
f̂k . From this recurrence relation the asymptotic behavior
f̂k ask→` can be probed by diagonalizing the state spa
matrix in Eq. ~A19!. The eigenvalues of this matrix are th
roots$1/z1* , . . . ,1/zp* % ~called poles!, which by construction
are all inside the unit disk. Therefore

lim
k→`

ufku;elk, ~A20!

wherel is related to the largest root and is always negat
since

l5max
k

lnU 1

zk*
U , 0. ~A21!

This exponential falloff of the characteristic function e
plains why the resulting PDF is relatively smooth.

Now that we have found a solution in terms of a@0,p#
Padéapproximant, it is legitimate to ask whether a@q,p#
approximant of the type

f̂ q,p~x!5
ud01d1e2 jx1•••1dqe2 jqxu2

u11a1e2 jx1•••1ape2 jpxu2
~A22!

could not bring additional flexibility and hence provide
better estimate of the PDF. Again, we exploit the analo
with spectral density estimation, in which the equivalents
@q,p# Padéapproximants are obtained with autoregress
moving average~ARMA ! models. The superiority of ARMA
over AR models is generally agreed upon@32#, although the
MISE does not firmly establish it@17#. Meanwhile we note
that there does not seem to exist a simple variational p
ciple, similar to that of the likelihood maximization, whic
naturally leads to a@q,p# Padéapproximant of the PDF.
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