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Estimating probability densities from short samples:
A parametric maximum likelihood approach
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A parametric method similar to autoregressive spectral estimators is proposed to determine the probability
density function(PDF of a random set. The method proceeds by maximizing the likelihood of the PDF,
yielding estimates that perform equally well in the tails as in the bulk of the distribution. It is therefore well
suited for the analysis of short sets drawn from smooth PDF’s and stands out by the simplicity of its compu-
tational scheme. Its advantages and limitations are discusS&d63-651%98)06410-1

PACS numbes): 02.70.Hm, 02.50.Ng

. INTRODUCTION A
f0=2 agux), 3
There are many applications in which it is necessary to “
estimate the probabll!ty density function PDF from a finite where the partition problem is now treated in dual space.
sample ofn observationsix;, Xp, ..., X} WhOse trueé  pig harametric approach has a number of interesting prop-
PDF isf(x). Here we consider the generic case in which thegtjes: a finite expansion often suffices to obtain a good ap-
identically distributedbut not necessarily independenan-  yimation of the PDF and the convergence of the series

dom variables have a compact suppqre [a,b]. _ versus the sample sizeis generally faster than for kernel
The usual starting point for a PDF estimation is the naiveggtimates. A strong point is its global character, since the
estimate PDF is fitted globally, yielding estimates that are better be-
n haved in regions where the lack of statistics causes kernel
0= EZ S(X=Xi), (1) estimates to perform pporly. Such a property is pqrticulquy
ni=1 relevant for the analysis of turbulent wave fields, in which

the tails of the distribution are of great interéstg.,[12]).
where () stands for the Dirac delta function. Although this  These advantages, however, should be weighed against a
definition has a number of advantages, it is useless for pragrumber of downsides. Orthogonal series do not provide con-
tical purposes since a smooth functional is needed. sistent estimates of the PDF since for increasing number of

Our problem consists in finding an estimdigx) whose  terms they converge towarfg(x) instead of the true density
integral over an interval of given length converges towardf(x) [13]. Furthermore, most series can only handle continu-
that of the true PDF as—o. Many solutions have been ous or piecewise continuous densities. Finally, the PDF esti-
developed for that purpose: foremost among these are kernglates obtained that way are not guaranteed to be nonnega-
techniques in which the estimafg(x) is smoothed locally tive (see, for example, the problems encounterefll#).
using a kernel functiosK (x) [1-3], The first problem is not a major obstacle, since most ex-

perimental distributions are smooth anyway. The second one
- bl AR is more problematic. In this paper we show how it can be
f(x)= faWK<T>f5(y)dy, 2 partly overcome by using a Fourier series expansion of the
PDF and seeking a maximization of the likelihood

whose width is controlled by the parametsr The well-
known histogram is a variant of this technique. Although [ = fbln f(x)dx. (4)
kernel approaches are by far the most popular ones, the a
choice of a suitable width remains a basic problem for which
visual guidance is often needed. More generally, one faceShe problem of choosing an appropriate partition then re-
the problem of choosing a good partition. Some solutionsiuces to that of fitting the PDF with a positive definite Pade
include Bayesian approach@4], polynomial fits[5], and  approximan{15].
methods based on wavelet filteribg. Our motivation for presenting this particular parametric
An alternative approach, considered by many autfibrs  approach stems from its robustness, its simplicity, and the
11], is a projection of the PDF on orthogonal functions originality of the computational scheme it leads to. The lat-
ter, as will be shown later, is closely related to the problem
of estimating power spectral densities with autoregressive
* Affiliated with: Universitede Provence and CNRS. Electronic (AR) or maximum entropy method46—18. To the best of
address: ddwit@cpt.univ.mrs.fr our knowledge, the only earlier reference to similar work is
Electronic address: floriani@cpt.univ.mrs.fr that by Carmicha€dl19]; here we emphasize the relevance of

1063-651X/98/584)/51158)/$15.00 PRE 58 5115 © 1998 The American Physical Society



5116 T. DUDOK de WIT AND E. FLORIANI PRE 58

the method for estimating PDF’s and propose a criterion folilt is therefore natural to seek a maximization of an entropic
choosing the optimum number of basis functions. quantity such as the sample entropy

+a
II. THE MAXIMUM LIKELIHOOD APPROACH A —f f(x)ln f(x)dx, (10

The method we now describe basically involves a projec- 7
tion of the PDF on a Fourier series. The correspondencer the sample likelihood

between the continuous PLCifx) and its discrete character-

.. . . . " + "
istic function ¢, is established by20] L:J In F(x)dx. (11)
+ K o7
— X . - .
b= f_w f(x)e’dx, ®)  we area priori inclined to choose the entropy because our
objective is the estimation of the PDF and not that of the
+o0 characteristic function. However, numerical investigations
f(x)=2 e ikx, 6 done in the context of spe<_:tra_| density estimation rather lend
(x) Wk;oo x © support to the likelihood criteriof22]. A different and stron-

ger motivation for preferring a maximization of the likeli-
where ¢ = ¢* e C is Hermitian[21]. Note that we have hood comes from the simplicity of the computational scheme
applied a linear transformation to convert the support fromit gives rise to.
[a,b] to[—m,7]. This maximization means that the tail of the characteristic
For a finite sample, an unbiased estimate of the charactefunction is chosen subject to the constraint
istic function is obtained by inserting Eql) into Eq. (5),

- o0
gving —=0, |k|>p. (12
n day
b= jkxi . .
¢k_ﬁi21 e, () From Egs.(9) and (11) the likelihood can be rewritten as
+ oo
The main problem now consists in recovering the PDF from [ = J+”|n 27 > e K| dx (13)
Eqg. (6) while avoiding the infinite summation. By working in - Ko K '

dual space we have substituted the partition choice problem _ . o _ o
by that of selecting the number of relevant terms in the FouAs shown in the Appendix, the likelihood is maximized

rier series expansion. when the PDF can be expressed by the functional
The simplest choice would be to truncate the series at a
H 6, 1 H R 1
given “wave number”’p and discard the other ones F(0=— ’ (14
. > > ce ik
fx)=27 > ¢e Ik (8) k==p
k=-p

which is a particular case of a Padpproximant with poles
Such a truncation is equivalent to keeping the lowest wavgnly and no zerog15]. Requiring thatfp(x) is real and
numbers and thus filtering out small details of the PDF. In-hounded, it can be rewritten as
cidentally, this solution is equivalent to a kernel filtering
with K(x)=sin(mx)/7x as kernel. This kernel is usually £ 1

avoided because it suffers from many drawbacks such as the fp(X)Z 27 [1tae Xt tae P2 (15
generation of spurious oscillations. [1+a.e S tage
An interesting improvement was suggested by Burg in theI'he values of the coefficientsa,, . .. ,a,} and of the nor-

context of spectr_al_dt_ansny estimatidisee, for example, malization constant are set by the condition that the Fou-
[16,17). The heuristic idea is to keep some of the low wave . - .
number terms while the remaining ones, instead of being séfe" transform off ,(x) must match the sample characteristic

to zero, are left as free parameters: function ¢, for [k|<p.
This solution has a number of remarkable properties,
A e o some of which are deferred to the Appendix. Foremost
f(x)=2m E ae” Xk with  a=dy, |k|=<p. among these are its positive definite character and the simple
k== relationship which links the polynomial coefficients
©) {a;, ..., ap} to the characteristic function on which they

- ) perform a regression. Indeed, we have
The parametersea,, for |k|>p, are then fixed self-

consistently accordlng to some criterion. . Bt a1t adi ot +aph p=0, 1<k=p.
We make use of this freedom to constrain the solution to (16)
a particular class of estimates. Without any prior information
at hand, a reasonable choice is to select the estimate th&his can be cast in a set of Yule-Walker equations whose
contains the least possible information or is the most likelyunique solution contains the polynomial coefficients
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N N o a &, than 27, say[—3,3] [26]. Once the Padapproximant is
b0 ¢-1 $-p+1 L known, the[ —3,3] interval is scaled back tpa,b].
b1 do (;57“2 a, &> If there is no natural periodic extension to the PPér

=—| |- A7)  example, iff(a) strongly differs fromf(b)] then the choice
; of Fourier basis functions in Eq3) becomes questionable
bo1 Po_n bo a 5 and, not surprisingly, the quality of the fit degrades. Even in
p p p bp . ) . .
this case, however, the results can still be improved by using

Advantage can be taken here of the Toeplitz structure of th@d hocsolutiqns[27]. . S
. T We mentioned before that the maximum likelihood
matrix. The proper normalizatioff Z-f(x)dx=1] of the

. h | hich is i method stands out by its computational simplicity. Indeed, a
PD_F is ensured by the value ef, which is given by a  minimization of the entropy would lead to the solution
variant of Eq.(16),

p
(Aﬁo"' a]_a)_l"‘ azg’\b_2+ ce +ap(’\ﬁ_p:80. (18) |n ’fp(X)Mkz Cke_jkx, (21)
=-p

Equations (15 and (17) illustrate the simplicity of the

method. whose numerical implementation requires an iterative mini-

mization and is therefore considerably more demanding.
Finally, the computational cost is found to be comparable
lll. SOME PROPERTIES to or even betteffor large setsthan for conventional histo-

A clear advantage of the method over conventional seriedram es_t|mates. Most of thg g:omput_atlon time goes into the
expansions is the automatic positive definite character of thglculation of the characteristic function, for which the num-
PDF. Another asset is the close resemblance with autoregreQ€" Of operations scales as the sample size
sive or maximum entropy methods that are nowadays widely
used in the estimation of spectral densities. Both methods IV. CHOOSING THE ORDER OF THE MODEL
have in common the estimation of a positive function by

means of a Padapproximant whose coefficients directly is- in J}Zelggrgzrs?niaot:angrJeOthir:w(iaténs:g IIZ’ :arllfeeztnserhtgv?/g\iat?”;lso
sue from a regressigrEq. (16)]. This analogy allows us to ) P ’ '

exploit here some results previously obtained in the framelén()cr:’Iearf)i"l\i,!gpblé:]?/;?]?if;g:ec?{tgﬁlgi(;?qzglr(taacl:rt]i?]e t?hftlendbgst
work of spectral analysis. P - g

One of these concerns the statistical properties of th ompromise between model complexity and quality of the

maximum likelihood estimate. These properties are badIyS'EriSl:ig: ell:nthti[fi%a_ll%eﬂfém:ofr;or I?:;bltgehgglrg;crguii
known because the nonlinearity of the problem impedes any P 9 ’ P

analytical treatment. The analogy with spectral densities hey require the series of characteristic functigrg} to be

however, reveals that the estimates are asymptotically nort]orma}lly distributed, which they are not.
mally distributed with a standard deviati¢p3,24] Guided by the way these empirical criteria have been cho-

sen, we have defined a new one, which is based on the fol-
lowing observation: ap increases starting from 0, the PDF’s

?‘p(x) progressively converge toward a stationary shape; after
some optimal order, however, ripples appear and the shapes
Start diverging again. It is therefore reasonable to compare
the PDF’s pairwise and determine how close they are. A

= natural measure of closeness between two positive distribu-
i i

(20 tions f,(x) andf,.(x) is the Kullback-Leibler entropy or

o . , information gain[28,2
The key point is that kernel estimates are relatively less re- gain| 9

liable in low density regions than in the bulk of the distribu- i f ()

tion, whereas the relative uncertainty of maximum likelihood i(fp+l,fp): f pr(X)In P dx, (22)

estimates is essentially constant. The latter property is obvi- - fo(x)

ously preferable when the tails of the distribution must be

investigated, e.g., in the study of rare events. which quantifies the amount of information gained by chang-
Some comments are now in order. By choosing a Fourielng the probability density describing our sample frégito

series expansion, we have implicitly assumed that the PDEpH. In other words, iH,, (or H,. ;) is the hypothesis that

was 2m periodic, which is not necessarily the case. Thus,\yag selected from the population whose probability density
special care is needed to enforce periodicity, since otherwise -

wraparound may resul25]. The solution to this problem ISTp (fp+a), thenl(fp. 1, 7y) is given as the mean informa-
depends on how easily the PDF can be extended periodp-On for dlAscnmmatmg betweel,., , andH,, per observa-
cally. In most applications, the tails of the distribution pro- tion fromfg, [28]. _ o _

gressively decrease to zero, so periodicity may be enforced Notice that the information gain is not a distance between
simply by artificially padding the tails with a small interval distributions; it nevertheless has the property of being non-
in which the density vanishes. We do this by rescaling thenegative and to vanish if and only f,=f,,,. We now
support from[a,b] to an interval which is slightly smaller proceed as follows: starting frop=0 the order is incre-

aiocf. (19

This scaling should be compared against that of convention
kernel estimates, for which
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mented until the information gain reaches a clear minimum; 10° : . .
this corresponds, as it has been checked numerically, to the (a)
convergence toward a stationary shape; the corresponding
order is then taken as the requested compromise. Clearly,
there is some arbitrariness in the definition of such a mini- 102t
mum since visual inspection and common sense are needed.
In most cases, however, the solution is evident and the . . .
search can be automated. Optimal orders usually range be- 0 5 10 15 20
tween 2 and 10; larger values may be needed to model dis- wave number k
continuous or complex shaped densities.

™

510
o
s
V. SOME EXAMPLES E
. . . 8
Three examples are now given in order to illustrate the E
limits and the advantages of the method. 0 5 10 15 20
order p
A. General properties =701 (c)
-
First, we consider a normal distribution with exponential g —757
tails as often encountered in turbulent wave fields. We simu- £ _gof
lated a random sample with= 2000 elements and the main 2 a5l
results appear in Fig. 1.
The information gain[Fig. 1(b)] decreases as expected —90, 5 10 15 20
until it reaches a well-defined minimum =7, which . order p
therefore sets the optimal order of our model. Since the true 10 ;

PDF is known, we can test this result against a common
measure of the quality of the fit, which is the mean integrated
squared errofMISE), d,

b ~
d(p)=fa[f(x)—fp(x)]2dx- (23

-5 0 5
amplitude x

The MISE, which is displayed in Fig.(), also reaches a FIG. 1. Example of a normal distribution with exponential tails.
minimum atp=7 and thus supports the choice of the infor- The sample size is=2000. From top to bottom are show@) the
mation gain as a reliable indicator for the best model. Testgagnitude$,| of the characteristic functiofthick line) and the fit
carried out on other types of distributions confirm this goodresulting from a seventh order moddh) the information gain
agreement. (thick line) and the MISE, both showing a minimum aroupe- 7

Now that the optimum PDF has been found, its characterghich is marked by a circler) the likelihoodL associated with the
istic function can be computed and compared with the meagjfferent PDF’s estimated fop=1-20; and finally(d) the maxi-
sured one, see Fig(d). As expected, the two characteristic mum likelihood estimate of the PDfhick line), an estimate based
functions coincide for th@ lowest wave numbel€q. (16)]; on a histogram with 101 equispaced biig®ty and the true PDF
they diverge at higher wave numbers, for which the modelthin line).
tries to extrapolate the characteristic function self-
consistently. The fast falloff of the maximum likelihood es- noise. A straightforward calculation of the expectation of
timate explains the relatively smooth shape of the resulting¢| indeed reveals the presence of a bias which is due to the
PDF. finite sample size

Finally, the quality of the PDF can be visualized in Fig.
1(d), which compares the measured PDF with the true one, N 04
and an estimate based on a histogram with 101 bins. An E[|¢k|]:|¢k|+ﬁ’ (24)
excellent agreement is obtained, both in the bulk of the dis-
tribution and in the tails, where the exponential falloff is wherey depends on the degree of independence between the
correctly reproduced. This example illustrates the ability ofsamples if{x}. This bias is illustrated in Fig. 2 for indepen-
the method to get reliable estimates in regions where stamtent variables drawn from a normal distribution, showing
dard histogram approaches have a lower performance.  how the wave number resolution gradually degrades as the
sample size decreases. Incidentally, a knowledge of the bias
level could be used to obtain confidence intervals for the
PDF estimate. This would be interesting insofar as no as-

The shape of the characteristic function in Figa)lis  sumptions have to be made on possible correlations in the
reminiscent of spectral densities consisting of a low wavedata set. We found this approach, however, to be too inac-
number (band-limited component embedded in broadband curate on average to be useful.

B. Interpreting the characteristic function
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10° ' ' ' ] 10 :
= =200
& = ]
= . n=2000 =102}
1071 n=20000
0 5 10 15 20 1 0-4 .
wave number k 10° .

FIG. 2. The expectatioE[|<?>k|] computed for sets of various
sizes taken from the same normal distribution. The noise-induced
bias level goes down as the size increases, progressively revealing <1072t
finer details of the PDF. =

The presence of a hias also gives an indication of the
smallest scaleén terms of amplitude ok) one can reliably
distinguish in the PDF. For a set of 2000 samples drawn
from a normal distribution, for example, components with
wave numbers in excess &&=3 are hidden by noise and
hence the smallest meaningful scales in the PDF are of the <102}
order of 6x=0.33. These results could possibly be further -
improved by Wiener filtering.

C. Influence of the sample size 10

To investigate the effect of the sample lengthwe now amplitude x
consider a bimodal distribution consisting of two normal dis- , _ .
tributions with different means and standard deviations. Such FIG. 3. The PDF's as calculated for sets of various sizes taken

A, . . from the same binormal distribution. The thick line designates the
gs{?qu;gﬁgs are known to be difficult to handle with kernel maximum likelihood estimate, the thin line the true PDF, and the

. . _ _ dots a histogram estimate obtained from 61 equispaced bins. The
Samples with, respectivelyn=200, n=2000, andn  ,imum orders are, respectively, from top to bottpm 5, p=6,
=20000 elements were generated; their characteristic fU”%{ndpzll.

tions and the resulting PDF’s are displayed in Fig. 3. Clearly,

finite sample effects cannot be avoided for small samples buthis problem is related to the fact that the PDF is discon-

the method nevertheless succeeds relatively well in capturingnuous and hence the characteristic function is not abso-

the true PDF and in particular the small peak associated witfytely summable.

the narrow distribution. An analySiS of the MISE shows that Similar prob|ems are routine|y encountered in the design

it is Systematica"y lower for maximum likelihood estimates of d|g|ta| ﬁ|terS, where steep responses cannot be approxi_

than for standard histogram estimates, supporting the formefaated with infinite impulse response filters that have a lim-

ited number of polef20]. The bad performance of the maxi-

D. A counterexample mum likelihood approach in this case also comes from its

The previous examples gave relatively good results bei_nability to handle densities that vanish over finite intervals.

cause the true distributions were rather smooth. Althougf* Minimization of the entropy would be more appropriate

such smooth distributions are generic in most applications iF€"€"
may be instructive to look at a counterexample, in which the
Consider the distribution which corresponds to a cut

We have presented a parametric procedure for estimating
through an annulus

univariate densities using a positive definite functional. The

1 method proceeds by maximizing the likelihood of the PDF

=, 1ls|x|s2 subject to the constraint that the characteristic functions of
f(x)=1 2 (25 the sample and estimated PDF’s coincide for a given number

0 elsewhere. of terms. Such a global approach to the estimation of PDF's

is in contrast to the better known local methaodsich as
A sample was generated with=2000 elements and the re- nonparametric kernel methgdshose performance is poorer
sulting information gains are shown in Fig. 4. There is anin regions where there is a lack of statistics, such as the tails
ambiguity in the choice of the model order and indeed theof the distribution. This difference makes the maximum like-
convergence of the PDF estimates toward the true PDF ishood method relevant for the analysis of short recdwish
neither uniform nor in the mean. Increasing the order im-typically hundreds or thousands of sampleSther advan-
proves the fit of the discontinuity a little but also increasestages include a simple computational procedure that can be
the oscillatory behavior known as the Gibbs phenomenontuned with a single parameter. An entropy-based criterion
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10° ; ; , difficult to find in the literature.
— (a) The maximum likelihood conditiohEg. (12)] can be ex-
3 pressed as
[o]
=
2 tr eikx @ ikx
E J x—dx=f —dx=0, (A1)
K] —ar ~ = f X)
E > e i
107" : - - 1=
0 5 10 15 20
order p for |k|>p [30]. This simply means that the Fourier expan-
15 b ' ' T ' sion of [f(x)]* should not contain terms of ordék|>p
(b) and hence the solution must be
1r p=2
= o 1
= f(X)=—F—". (A2)
05f 1 B
E cre Ik
=1 k:_p
0 X .
-2 -1 Y 1 2 The PDF we are looking for must of course be real, and so
amplitude x the coefficients should be Hermitiap=c* ,. We also want
18 ) ' ' ' ' the PDF to be bounded, which implies that
1t p=16 1 P _
= ﬂ 2 cee £0, Vxe[—m ] (A3)
= k=-p
05f : 1
JHU. ,UU Let us now define, foz complex
0 . p
-2 -1 0 1 2
amplitude x C(Z)IKE C_ 2% (A4)
=—p

FIG. 4. Results obtained for an annular distribution; the sample
size isn=2000. In(a) the information gain has no clear minimum and
and hence there is no well-defined order for the modelb)rthe
estimated PDF's fop=1 andp=2 fail to fit the true PDRthick P(z)=2z"C(z). (A5)
line). Increasing the ordeic) improves the fit but also enhances the

Gibbs phenomenon. Dots correspond to a histogram estimate witP(z) is a polynomial of degree|®2 It can be easily verified
equispaced bins. that[31]
has been developed for selecting the latter. 1\ 1*
The method works best with densities that are at least P(z)=2z°" P(—H (AB)
once continuously differentiable and that can be extended z*
periodically. Indeed, the shortcomings of the method are es-
sentially the same as for autoregressive spectral estimate®s @ consequence of the Hermiticity of the coefficieptsin
which give rise to the Gibbs phenomenon if the density isparticular, this tells us that i, is a root ofP(z), then 1£7
discontinuous. (the complex conjugate of its mirror image with respect to
The method can be extended to multivariate densities, buhe unit circlg is also a root ofP(z). From Eg.(A3) we
the computational procedures are not yet within the realm oknow that none of these roots are located on the unit circle.
practical usage. Its numerous analogies with the design of Let us now rearrange the roots &f(z), denoting by

digital filters suggest that it is still open to improvements. {z;, ...z} the p roots lying outside the unit disk and by
{1/z1, ... 1k} thep other ones that are located inside the
ACKNOWLEDGMENTS unit circle. We can then write

We gratefully acknowlegjge the dynamical systems team 1 1
at the Center de Physique drgue for many discussions as P(z)=c_p(z—2y)-- ~(z—zp)< z— —*) e ( z— —) ,
well as D. Lagoutte and B. Torsani for making comments 1
on the manuscript. E. Floriani acknowledges support by the (A7)
EC under Grant No. ERBFMBICT960891. h
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APPENDIX

C_pZy - "Zp=CpZy -~ Zp. (A8)

T *

We detail here the main stages that lead to the PDF esti-
mate described in Sec. Il because extensive proofs are ratherom thisC(z) can be written as



PRE 58 ESTIMATING PROBABILITY DENSITIES FROM SHORT ... 5121
1\ " J b
C(z)=+B(2) B(— , (A9) %o $-pe1
7 def i |#0. (A18)
where $p-1 $o
Cp 12 The latter condition is verified except when a repetitive pat-
B(z)= 72 (z=2z3)---(z=z,).  (A10)  tern occurs in the characteristic function. If this happens then
P

By construction, all the roots d@(z) are located outside the
unit disk.

Finally, we get forf ,(x)

1 1
= — =+ - .
C(z=e™) [B(eM)|?

fo(x) (A11)

All the solutions of the maximum likelihood principle, if real

and bounded, are thus of constant sign and have the structure

given by Eq.(A11). Excluding negative definite solutions we
obtain

f 0= 22 ! (A12)
X)==— . —
P 27 [1+a,e X+ .. +a,e P
where
2 o (A13)
go=——>, a=—, i=1,...p,
"o’ " b3 P
where{b,, ... by} are the coefficients of the polynomial

B(z) andA(z)=1+a,z+ - - - +a,z" has all its roots outside
the unit disk. The normalization constasg is set by the
condition

+a

.

The coefficientda, , . . . ,a,} are now identified on the basis
that the characteristic function of the PDF estimfa,gex)
should match the firsp terms of the sample characteristic
function exactly, namely,

fo0dx=1. (A14)

+

&k=<§5k=ff?p(><)ejkxdx, 1<k=p. (A15)

To this purpose, let us compute the quanmﬁ/zoaqu_k.
Recalling thatA(z) is analytic in the unit circle and making
use of Cauchy’s residue theorem, we obtain

p
> agh =0, 1=<lI=p, (A16)
k=0

p ~

IZ,O ad_y=¢o. (A17)

Equation(A16) fixes the values ofa,, ... a,} and gives
the Yule-Walker equation€g. (17)]. The solution is unique
provided that

the orderp should simply be chosen to be less than the
periodicity of this pattern.

Besides its positivity, the solution we obtain has a number
of useful properties. First, note that all the terms of its char-
acteristic function can be computed recursively by

o B e e A |

+

- 1 0 0 .

@y -l o 1 0 k-1 ,

&k*p‘FZ L 0 0 0 &kprrl
(A19)

in which the starting condition is set by tipefirst values of
&y From this recurrence relation the asymptotic behavior of
& ask—o can be probed by diagonalizing the state space
matrix in Eq.(A19). The eigenvalues of this matrix are the

roots{1/zy, ...,lky} (called poles which by construction
are all inside the unit disk. Therefore

lim | b, | ~e*¥, (A20)

k—o0

where\ is related to the largest root and is always negative
since

0.

z

A =maxin < (A21)

k

This exponential falloff of the characteristic function ex-
plains why the resulting PDF is relatively smooth.

Now that we have found a solution in terms of @p]
Padeapproximant, it is legitimate to ask whether[@,p]
approximant of the type

|do+die X+ - - +dge 192
|1+a,e7 4. +a,e P2

Fop(X)= (A22)

could not bring additional flexibility and hence provide a
better estimate of the PDF. Again, we exploit the analogy
with spectral density estimation, in which the equivalents of
[g,p] Padeapproximants are obtained with autoregressive
moving averagéARMA ) models. The superiority of ARMA
over AR models is generally agreed ugd@2], although the
MISE does not firmly establish [tL7]. Meanwhile we note
that there does not seem to exist a simple variational prin-
ciple, similar to that of the likelihood maximization, which
naturally leads to 4q,p] Padeapproximant of the PDF.
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